养生健康

红蛋白的结构

红蛋白的结构

有8段α-螺旋区,每个α-螺旋区含7~24个氨基酸残基,分别称为A、B、C…G及H肽段。

有1~8个螺旋间区,肽链拐角处为非螺旋区(亦称螺旋间区),包括N端有2个氨基酸残基,C端有5个氨基酸残基的非螺旋区内部存在一口袋形空穴,血红素居于此空穴中血红素是铁卟淋化合物,它由4个吡咯通过4个甲炔基相连成一个大环,Fe2+居于环中。铁与卟啉环及多肽链氨基酸残基的连接:铁卟啉上的两个丙酸侧链以离子键形式与肽链中的两个碱性氨基酸侧链上的正电荷相连。血红素的Fe2+与4个咯环的氮原子形成配位键,另2个配位键1个与F8组氨酸结合,1个与O2结合,故血红素在此空穴中保持稳定位置。这种构象非常有利于运氧和储氧功能,同时也使血红素在多肽链中保持稳定。

吃火腿肠的危害 缺氧

亚硝酸盐是强氧化剂,进入血液后会与血红蛋白结合,使氧合血红蛋白变为高铁血红蛋白,从而使血红蛋白失去携氧能力,导致组织缺氧。

煤气中毒的原因

煤气是煤和其它含碳物质燃烧时所产生的一种不稳定的混合性气体,主要含有一氧化碳、氢、甲烷、乙烯、丁烯、氮、碳酸、硫化氢等.其中以一氧化碳的含量最高,对人体的毒性最大,所以煤气中毒实际是指一氧化碳中毒.当人处在一氧化碳浓度较高的地方就会发生中毒,一氧化碳和氧气可以同时通过肺的通气进入肺,再通过肺泡内的气体交换进入血液,氧和一氧化碳都能与血红蛋白结合,而一氧化碳与血红蛋白的结合能力大得多,就使更多的血红蛋白与一氧化碳结合,又因为一氧化碳与血红蛋白结合后分离极慢,而血红蛋白的数量是有限的,这样就使氧失去了与血红蛋白结合的机会,而不能被血液运输到组织细胞,造成组织细胞缺氧.预防措施要注意通风换气.

故答案为:煤气中毒实际是指一氧化碳中毒;当人处在一氧化碳浓度较高的地方就会发生中毒,一氧化碳和氧气可以同时通过肺的通气进入肺,再通过肺泡内的气体交换进入血液,氧和一氧化碳都能与血红蛋白结合,而一氧化碳与血红蛋白的结合能力大得多,就使更多的血红蛋白与一氧化碳结合,又因为一氧化碳与血红蛋白结合后分离极慢,而血红蛋白的数量是有限的,这样就使氧失去了与血红蛋白结合的机会,而不能被血液运输到组织细胞,造成组织细胞缺氧.预防措施要注意通风换气.

补铁补血生理作用

1、组成血红蛋白以参与氧的运输和存储

铁是血红蛋白的组成成分,血红蛋白参与氧的运输和存储。由于体内铁的储存不能满足正常红细胞生成的需要而发生的贫血称为缺铁性贫血,一般缺铁持续3~5个月时发生。

2、组成肌红蛋白、脑红蛋白

二者与血红蛋白结构近似,是携氧、储氧球蛋白。

3、直接参与人体能量代谢

人体细胞内呼吸的氧化呼吸链中,很多酶是含血红素铁酶。美国高山人体能超常与每天摄入大量的铁有关系。

4、对人体免疫系统有影响

人体内的铁无论是缺乏或过量都会对人体的健康构成威胁,只有正常含量的铁才能保证人体健康。

地中海贫血mcv吃些什么

地中海贫血又称海洋性贫血,是一组遗传性疾病,是人群中最常见的不完全显性的慢性溶血性贫血病。其发病机制是合成血红蛋白的珠蛋白链减少或缺失导致血红蛋白结构异常,这种含有异常血红蛋白的红细胞变形性降低,寿命缩短,可以提前被人体的肝脾等破坏,导致贫血甚至发育等异常,这种疾病也就是医学上讲的溶血性贫血。

1、地中海贫血患者应多吃高蛋白食物。因为,光补充铁元素也是不够的,还要使铁被人体充分吸收利用才能起到补血的效果,而高蛋白食物就能够帮助人体对铁的吸收,同时这类食物也是合成血红蛋白必需的物质,这类食物有如蛋类、乳类、鱼类、瘦肉类、虾及豆类等。

2、缺乏维生素E,容易使地中海型贫血患者的血球破裂,进而引起溶血。可以充分摄取如绿叶蔬菜、全谷类、红萝卜、蛋类、甘藷、豆类制品、及植物油等,都是防治地中海贫血很好的选择。

补铁的生理作用

1、组成血红蛋白以参与氧的运输和存储铁是血红蛋白的组成成分,血红蛋白参与氧的运输和存储。由于体内铁的储存不能满足正常红细胞生成的需要而发生的贫血称为缺铁性贫血,一般缺铁持续3~5个月时发生。

2、组成肌红蛋白、脑红蛋白二者与血红蛋白结构近似,是携氧、储氧球蛋白。

3、直接参与人体能量代谢人体细胞内呼吸的氧化呼吸链中,很多酶是含血红素铁酶。美国高山人体能超常与每天摄入大量的铁有关系。

4、对人体免疫系统有影响人体内的铁无论是缺乏或过量都会对人体的健康构成威胁,只有正常含量的铁才能保证人体健康。

溶血性贫血病因

根据红细胞寿命缩短的原因,可分为红细胞内在缺陷和外来因素所致的溶血性贫血。

红细胞内在缺陷所致的溶血性贫血:

(一)红细胞膜的缺陷。

(二)血红蛋白结构或生成缺陷。

(三)红细胞酶的缺陷。红细胞外在缺陷所致的溶血性贫血:外部的缺陷,通常是获得性的,红细胞可受到化学的,机械的或物理因素,生物及免疫学因素的损伤而发生溶血,溶血可在血管内,也可在血管外。

地中海贫血是什么

地中海贫血是什么

地中海贫血又称海洋性贫血,是一组遗传性疾病,是人群中最常见的不完全显性的慢性溶血性贫血病。其发病机制是合成血红蛋白的珠蛋白链减少或缺失导致血红蛋白结构异常,这种含有异常血红蛋白的红细胞变形性降低,寿命缩短,可以提前被人体的肝脾等破坏,导致贫血甚至发育等异常,这种疾病也就是医学上讲的溶血性贫血。

地中海贫血症属于一种“可防难治”的遗传性疾病,如果能在婚前就清楚了解自己的遗传背景,并且在产前做好地贫筛查和诊断,就可以有效把下一代患重型地贫的机会减至最低。

通过以上专家的介绍,大家清楚地中海贫血是什么了吧,对于地中海贫血,最重要的就是要对它进行有效的预防,一般专家建议大家在婚前进行有关的检查,以了解双方的身体情况,如果双方都有地中海贫血,通常不建议结婚。

溶血性贫血可以分哪几种

一、血管外溶血

红细胞在巨噬细胞中破坏后,血红蛋白被释放出来,就在巨噬细胞内分解成珠蛋白和血红素,血红素分解为铁(铁食品),一氧化碳,碳氧血红蛋白,胆绿素,后者最后变成胆红素被血浆运至肝脏。在肝内,胆红素与葡萄糖醛酸结合为直接胆红素。未与葡萄糖醛酸结合的胆红素称间接胆红素。胆红素与葡萄糖结合为直接胆红素。未与葡萄糖醛酸结合的胆红素称间接胆红素。胆红素葡萄(葡萄食品)糖醛酸复合物经胆汁排入小肠,分解为粪尿胆原。粪尿胆原可被吸收入血液而从尿内排出。血管外溶血可发生于脾、肝或骨髓的巨噬细胞。脾脏能最有效地清除有轻微损伤的红细胞,因在脾索中有独特的循环结构。肝脏血流量超过脾脏血流量,它是除去和吞噬广泛损伤红细胞的重要部位。IgM和补体二者致敏的红细胞,很容易在肝脏被有C3b受体的肝巨噬细胞除去。反之,IgM致敏而没有补体成分附着的红细胞,其生存期正常,因为巨噬细胞没有IgG致敏的红细胞,可激活或不激活补体,因红细胞表面IgG的许多分子只与一个补体分子结合。而IgG致敏的红细胞,即使没有补体也能被巨噬细胞清除。IgG致敏的红细胞主要在脾脏被巨噬细胞(有IgG-Fe受体,还有C3b受体)清除。IgG和补体二者同时致敏的红细胞的清除较迅速,因为吞噬作用受二种受体介导。所以血管外溶血的部位和程度决定于抗体的种类和有无补体存在。骨髓巨噬细胞清除有内在异常的成熟的前体细胞,导致无效红细胞生成,如地中海贫血和巨幼细胞性贫血。遗传性红细胞膜、血红蛋白和细胞内酶缺陷等伴发的溶血性贫血,都有一定程度的无效红细胞生成。

二、血管内溶血

发生血管内溶血时,血红蛋白直接被释放入血浆,与血浆中的结合珠蛋白,一种α2糖蛋白结合,由于其分子较大,故不被肾脏排泄而被肝细胞摄取,最后变成胆红素。溶血较多时血浆中结合珠蛋白的浓度显著降低或消失,不过血浆中结合珠蛋白浓度的高低也受到其他多种因素的影响。

当血浆内结合珠蛋白全部与血红蛋白结合后,从游离血红蛋白分解出的血红素能与血结素,一种β糖蛋白结合,然后也被肝细胞摄取。大量溶血时血浆血结素的浓度亦降低。

血浆中的游离血红蛋白被氧化成高铁血红蛋白,再分解为高铁血红素,然后与血浆中白蛋白结合成高铁血红白蛋白,最后与血结素结合而被细胞摄取。血浆如有较多游离的血红蛋白, 血浆可呈粉红色,但由于高铁血红白蛋白呈棕色,高铁血红蛋白呈褐色,因此其粉红色被掩盖而不易看出。

当血浆中的蛋白质(蛋白质食品)与血红蛋白的结合已达饱和时,未结合的血红蛋白由于分子较小(分子量66000)出现于尿内,使尿色变红。高铁血红蛋白亦可出现于尿内,使尿呈褐色,高铁血红白蛋白由于分子大、不出现于尿内。

尿中血红蛋白被肾小管上皮吸收后分解的铁以铁蛋白及含铁血黄素的形式贮积于肾小管上皮细胞内,随上皮细胞脱落而自尿排出,以尿沉渣作亚铁氰化钾染色,可见到上皮细胞内有蓝色的含铁血黄素颗粒,含铁血黄素尿常出现于慢性血管内溶血,如阵发性睡眠性血红蛋白尿及机械性溶血性贫血。

溶血性贫血病因

病因(65%):

根据红细胞寿命缩短的原因,可分为红细胞内在缺陷和外来因素所致的溶血性贫血。

红细胞内在缺陷所致的溶血性贫血:

(一)红细胞膜的缺陷。

(二)血红蛋白结构或生成缺陷。

(三)红细胞酶的缺陷。红细胞外在缺陷所致的溶血性贫血:外部的缺陷,通常是获得性的,红细胞可受到化学的,机械的或物理因素,生物及免疫学因素的损伤而发生溶血,溶血可在血管内,也可在血管外。

血红蛋白的工作原理

血红蛋白与氧结合的过程是一个非常神奇的过程。首先一个氧分子与血红蛋白四个亚基中的一个结合,与氧结合之后的珠蛋白结构发生变化,造成整个血红蛋白结构的变化,这种变化使得第二个氧分子相比于第一个氧分子更容易寻找血红蛋白的另一个亚基结合,而它的结合会进一步促进第三个氧分子的结合,以此类推直到构成血红蛋白的四个亚基分别与四个氧分子结合。而在组织内释放氧的过程也是这样,一个氧分子的离去会刺激另一个的离去,直到完全释放所有的氧分子,这种有趣的现象称为协同效应。

血红素分子结构由于协同效应,血红蛋白与氧气的结合曲线呈S形,在特定范围内随着环境中氧含量的变化,血红蛋白与氧分子的结合率有一个剧烈变化的过程,生物体内组织中的氧浓度和肺组织中的氧浓度恰好位于这一突变的两侧,因而在肺组织,血红蛋白可以充分地与氧结合,在体内其他部分则可以充分地释放所携带的氧分子。可是当环境中的氧气含量很高或者很低的时候,血红蛋白的氧结合曲线非常平缓,氧气浓度巨大的波动也很难使血红蛋白与氧气的结合率发生显着变化,因此健康人即使呼吸纯氧,血液运载氧的能力也不会有显着的提高,从这个角度讲,对健康人而言吸氧的所产生心理暗示要远远大于其生理作用。

除了运载氧,血红蛋白还可以与二氧化碳、一氧化碳、氰离子结合,结合的方式也与氧完全一样,所不同的只是结合的牢固程度,一氧化碳、氰离子一旦和血红蛋白结合就很难离开,这就是煤气中毒的原理,遇到这种情况可以使用其他与这些物质结合能力更强的物质来解毒,比如一氧化碳中毒可以用静脉注射亚甲基蓝的方法来救治。

缀合蛋白质

血红素和珠蛋白构成的缀合蛋白质,是脊椎动物血液的有色成分。其主要功能是运输氧,也有维持血液酸碱平衡的作用。血红素是含2价铁的卟啉化合物。铁有6个配位键,其中4个与血红素的环状结构相连,并与之处在同一平面中。另2个配位键中的一个与蛋白质部分相连,还有1个则连接氧。珠蛋白含有4个亚基(α2β2),每个亚基连接1个血红素辅基。人和许多动物血红蛋白α链(含141个氨基酸残基)和β链(含146个氨基酸残基)的氨基酸序列已确定,也已用X射线衍射结构分析测定其四级结构。血红蛋白基因的点突变导致异常血红蛋白的产生。已发现数百种异常血红蛋白,其中只有一小部分引起疾病发生,最常见也最了解的疾病是镰刀形红细胞贫血病。

在血红蛋白中,血红素辅基的Fe2+能可逆载氧,载氧时Fe2+的状态为低自旋,半径较小,能嵌入卟啉环的平面内,呈六配位。而脱氧后,Fe2+呈高自旋态,半径较大,不能嵌入卟啉环的平面中,高出平面70-80pm,Fe-N距离220pm,为五配位。

生理意义

血红蛋白的四级结构对其运氧功能有重要意义。它能从肺携带氧经由动脉血运送给组织,又能携带组织代谢所产生的二氧化碳经静脉血送到肺再排出体外。现知它的这种功能与其亚基结构的两种状态有关,在缺氧的地方(如静脉血中)亚基处于钳制状态,使氧不能与血红素结合,所以在需氧组织里可以快速地脱下氧;在含氧丰富的肺里,亚基结构呈松弛状态,使氧极易与血红素结合,从而迅速地将氧运载走。亚基结构的转换使呼吸功能高效进行。

氰化高铁法:手指血20微升

自动血细胞分析仪:静脉血1~2毫升,EDTAK2抗凝

生理情况下,人体每天均约有1/120红细胞衰亡,同时,又有1/120的红细胞产生,使红细胞的生成与衰亡保持动态平衡。多种原因可使这种平衡遭到破坏,导致红细胞和血红蛋白数量减少或增多。

红蛋白的工作原理

血红蛋白与氧结合的过程是一个非常神奇的过程。首先一个氧分子与血红蛋白四个亚基中的一个结合,与氧结合之后的珠蛋白结构发生变化,造成整个血红蛋白结构的变化,这种变化使得第二个氧分子相比于第一个氧分子更容易寻找血红蛋白的另一个亚基结合,而它的结合会进一步促进第三个氧分子的结合,以此类推直到构成血红蛋白的四个亚基分别与四个氧分子结合。而在组织内释放氧的过程也是这样,一个氧分子的离去会刺激另一个的离去,直到完全释放所有的氧分子,这种有趣的现象称为协同效应。[3]

协同效应

血红素分子结构由于协同效应,血红蛋白与氧气的结合曲线呈S形,在特定范围内随着环境中氧含量的变化,血红蛋白与氧分子的结合率有一个剧烈变化的过程,生物体内组织中的氧浓度和肺组织中的氧浓度恰好位于这一突变的两侧,因而在肺组织,血红蛋白可以充分地与氧结合,在体内其他部分则可以充分地释放所携带的氧分子。可是当环境中的氧气含量很高或者很低的时候,血红蛋白的氧结合曲线非常平缓,氧气浓度巨大的波动也很难使血红蛋白与氧气的结合率发生显着变化,因此健康人即使呼吸纯氧,血液运载氧的能力也不会有显着的提高,从这个角度讲,对健康人而言吸氧的所产生心理暗示要远远大于其生理作用。

除了运载氧,血红蛋白还可以与二氧化碳、一氧化碳、氰离子结合,结合的方式也与氧完全一样,所不同的只是结合的牢固程度,一氧化碳、氰离子一旦和血红蛋白结合就很难离开,这就是煤气中毒的原理,遇到这种情况可以使用其他与这些物质结合能力更强的物质来解毒,比如一氧化碳中毒可以用静脉注射亚甲基蓝的方法来救治。

缀合蛋白质

血红素和珠蛋白构成的缀合蛋白质,是脊椎动物血液的有色成分。其主要功能是运输氧,也有维持血液酸碱平衡的作用。血红素是含2价铁的卟啉化合物。铁有6个配位键,其中4个与血红素的环状结构相连,并与之处在同一平面中。另2个配位键中的一个与蛋白质部分相连,还有1个则连接氧。珠蛋白含有4个亚基(α2β2),每个亚基连接1个血红素辅基。人和许多动物血红蛋白α链(含141个氨基酸残基)和β链(含146个氨基酸残基)的氨基酸序列已确定,也已用X射线衍射结构分析测定其四级结构。血红蛋白基因的点突变导致异常血红蛋白的产生。已发现数百种异常血红蛋白,其中只有一小部分引起疾病发生,最常见也最了解的疾病是镰刀形红细胞贫血病。

在血红蛋白中,血红素辅基的Fe2+能可逆载氧,载氧时Fe2+的状态为低自旋,半径较小,能嵌入卟啉环的平面内,呈六配位。而脱氧后,Fe2+呈高自旋态,半径较大,不能嵌入卟啉环的平面中,高出平面70-80pm,Fe-N距离220pm,为五配位。

女人贫血的原因 溶血

溶血性贫血系指红细胞破坏加速,而骨髓造血功能代偿不足时发生的一类贫血。根据红细胞寿命缩短的原因,可分为:

1、红细胞膜的缺陷。

2、血红蛋白结构或生成缺陷。

3、红细胞酶的缺陷。

通常是获得性的,红细胞可受到化学的、机械的或物理因素、生物及免疫学因素的损伤而发生溶血。溶血可在血管内,也可在血管外。

一氧化碳是如何致人中毒的

什么是一氧化碳中毒

一氧化碳中毒是含碳物质燃烧不完全时的产物经呼吸道吸入引起中毒。

中毒机理是一氧化碳与血红蛋白的亲合力比氧与血红蛋白的亲合力高200~300倍,所以一氧化碳极易与血红蛋白结合,形成碳氧血红蛋白,使血红蛋白丧失携氧的能力和作用,造成组织窒息。对全身的组织细胞均有毒性作用,尤其对大脑皮质的影响最为严重。

一氧化碳是如何致人中毒的

看完上述内容,相信大家已经了解了一氧化碳中毒了吧!那么,一氧化碳中毒的缘由是什么呢?

一氧化碳进入人体之后会和血液中的血红蛋白结合,进而使血红蛋白不能与氧气结合,从而引起机体组织出现缺氧,导致人体窒息死亡。因此一氧化碳具有毒性。

一氧化碳是无色、无臭、无味的气体,故易于忽略而致中毒。常见于家庭居室通风差的情况下,煤炉产生的煤气或液化气管道漏气或工业生产煤气以及矿井中的一氧化碳吸入而致中毒。

相关推荐

吸烟影响青少年智力发育和生长发育

吸烟危害人的健康已为广大人们所共识,对青少年来说,危害性就更大。据医学家研究表明,青少年正处在生长发育时期,各生理系统、器官都尚未成熟,其对外界环境的有害因素的抵抗力较成人为弱,易于吸收毒物损害身体的正常生长。据美国25个州的调查,吸烟开始年龄与肺癌死亡率呈负相关。若将不吸烟者肺癌死亡率为1.00时,15岁以下开始吸烟者其死亡率为19.68;20~24岁为10.08;25岁以上为4.08。说明吸烟开始年龄越早,肺癌发生率与死亡率越高。 吸烟损害大脑,使智力受到影响。在烟草的烟雾中,一氧化碳含量很高。吸入人

冻过的大白菜可以吃吗 什么样的大白菜不能吃

腐烂的大白菜、剩得时间过长的、没腌透而半生半熟的、反复加热的大白菜,这些大白菜不能食用。因为,在这四种情况下,大白菜会含有亚硝酸盐,它会与身体中的血红蛋白结合,形成高铁血红蛋白,导致体内缺氧,出现中毒症状,从而出现呼吸困难、麻痹。

一氧化碳中毒有什么危害

一氧化碳中毒是含碳物质燃烧不完全时的产物,经过呼吸道引起的中毒。它的机理主要是一氧化碳和血红蛋白的亲和力,比氧和血红蛋白的亲和力高两百到三百倍,所以一氧化碳与血红蛋白结合形成了碳氧血红蛋白,而使血红蛋白丧失了携氧的能力和作用,造成对组织细胞的窒息,对全身的组织细胞都有毒性作用,尤其是对大脑皮质的影响是最严重的。

大白菜放置时间长到底能不能吃

不能吃。 腐烂的大白菜、剩得时间过长的、没腌透而半生半熟的、反复加热的大白菜,这些大白菜不能食用。因为,在这四种情况下,大白菜会含有亚硝酸盐,它会与身体中的血红蛋白结合,形成高铁血红蛋白,导致体内缺氧,出现中毒症状,从而出现呼吸困难、麻痹。

什么习惯易使脸长皱纹 吸烟

吸烟者眼外周皱纹会过早地呈现出来。因为香烟中的尼古丁等有害物质对皮肤毛细血管有破坏作用,能影响皮肤的血液循环,造成营养障碍,加上香烟中的一氧化碳与血红蛋白结合,降低了血红蛋白的带氧功能,造成皮肤缺氧,引发皱纹。

开水反复加热有什么危害 压硝酸盐中毒的表现

千滚水中含有的烟硝酸盐较多,这种成分会和血液中的血红蛋白结合,形成亚硝基血红蛋白,失去携带氧气的功能,因此,喝前滚水会使人在十几分钟或一至三小时后出现组织缺氧、心慌、气短、口唇和指甲,甚至全身皮肤紫绀,并有头晕、头痛、嗜睡或烦躁不安、呼吸急促、血压下降等症状。

香烟的主要成分

香烟的主要成分之一氧化碳 吸烟时,烟丝并不能完全燃烧,因此会有较多的一氧化碳产生。一氧化碳与血红蛋白结合,影响心血管的血氧供应,促进胆固醇增高,也可以间接影响某些肿瘤的形成。一氧化碳是一种无色无味的气体,人们常说的煤气中毒,就是指一氧化碳中毒。一氧化碳与血红蛋白的亲和力比氧气高250倍,当人们吸入较多的一氧化碳时,一氧化碳与血红蛋白结合形成大量的碳合血红蛋白,而氧合血红蛋白大大减少,造成组织和器官缺氧,进而使大脑、心脏等多种器官产生损伤。 每支烟燃烧时可产生一氧化碳20—30毫克。若许多吸烟者聚集在拥挤且

重金属中毒后会有什么危害

重金属进入人体,会和你人体的某些酶结合,抑制人体必须的蛋白质的合成,影响人的正常生理活动;或是抑制酶的活性,影响人体内的离子调节,改变蛋白质的结构,使蛋白质凝固; 有些还能影响神经系统,抑制和干扰神经系统功能。例如铅能硬气血红蛋白合成的障碍,铅还能直接作响肾小球滤过率降低。而汞可与蛋白质及酶系统中的巯基结合,抑制其功能,甚至使其失用于红细胞,影响红细胞膜稳定性,最后导致溶血; 造成肾小管重吸收功能降低,同时还影活;汞与体内蛋白结合后可由半抗原成为抗原,引起变态反应,引起肾病综合征。

动脉血氧分压的正常值是多少

动脉血氧分压(PaO2)及动脉血物理溶解氧的分压。氧从肺泡人血后,除少部分溶解于血液中,大部分进入红细胞与血红蛋白结合,形成氧合血红蛋白,其结合是可逆的,当PaO2升高时O2趋向与血红蛋白结合,当PaO2下降时O2趋向与血红蛋白解离,释放出结合的O2则进入组织参与代谢。 正常人动脉血氧分压参考正常值范围是95~100mmHg。静脉血氧分压参考正常值范围是35~40mmHg。 意义:反映心肺功能和缺氧程度,氧分压减低,见于个医学教育网收集整理种肺部疾病,如:慢支、肺气肿、肺心病。 低于80~70mmHg(1

溶血性贫血病因

根据红细胞寿命缩短的原因,可分为红细胞内在缺陷和外来因素所致的溶血性贫血。 一、红细胞内在缺陷所致的溶血性贫血。 1、细胞膜的缺陷。 2、红蛋白结构或生成缺陷。 3、细胞酶的缺陷。 4、型为O的女性与非O型男性产下的孩子 二、红细胞外在缺陷所致的溶血性贫血。 外部的缺陷,通常是获得性的,红细胞可受到化学的、机械的或物理因素、生物及免疫学因素的损伤而发生溶血。溶血可在血管内,也可在血管外。